

15 August, 2003

Bruce Lewis Environmental Resources Management 2525 Natomas Park Drive, Suite 350 Sacramento, CA 95833

RE: Aerojet RI/FS Work Order: P307532

Enclosed are the results of analyses for samples received by the laboratory on 07/28/03 17:25. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Angelee Cari For Mark Shipman Project Manager

Angelee Care

CA ELAP Certificate #2374

P307532

Environmental Resources Management 2525 Natomas Park Drive, Suite 350 Sacramento CA, 95833

Project: Aerojet RI/FS Reported: Project Number: N/A Project Manager: Bruce Lewis 08/15/03 14:38

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
35D-SB26-6	P307532-01	Soil	07/25/03 16:06	07/28/03 17:25
35D-SB26-11	P307532-02	Soil	07/25/03 16:19	07/28/03 17:25
35D-SB26-15E	P307532-03	Water	07/25/03 16:31	07/28/03 17:25
35D-SB26-15	P307532-04	Soil	07/25/03 16:49	07/28/03 17:25
35D-SB26-30	P307532-06	Soil	07/28/03 10:44	07/28/03 17:25
35D-SB26-35	P307532-07	Soil	07/28/03 11:05	07/28/03 17:25
35D-SB26-35D	P307532-08	Soil	07/28/03 11:05	07/28/03 17:25
35D-SB26-40	P307532-09	Soil	07/28/03 11:39	07/28/03 17:25
35D-SB26-45	P307532-10	Soil	07/28/03 12:02	07/28/03 17:25
35D-SB26-2.5	P307532-11	Soil	07/28/03 15:48	07/28/03 17:25
35D-SB26-20E	P307532-12	Water	07/28/03 15:54	07/28/03 17:25

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P307532 **Reported:** 08/15/03 14:38

Tentatively Identified Compounds by GC/MS Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-6 (P307532-01) Soil	Sampled: 07/25/03	3 16:06	Received:	07/28/03	3 17:25					
No TICs found	ND		10	ug/kg	1	3070671	07/31/03	08/07/03	EPA 8270C	
35D-SB26-11 (P307532-02) Soil	Sampled: 07/25/0	03 16:19	Received	07/28/0	3 17:25					
No TICs found	ND		10	ug/kg	1	3070671	07/31/03	08/07/03	EPA 8270C	
35D-SB26-15E (P307532-03) Wa	nter Sampled: 07/	25/03 16	5:31 Receiv	ved: 07/2	28/03 17:25					
No TICs found	ND		10	ug/l	1	3070657	07/30/03	08/07/03	EPA 8270C	
35D-SB26-15 (P307532-04) Soil	Sampled: 07/25/0	3 16:49	Received	07/28/0	3 17:25					
No TICs found	ND		10	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
35D-SB26-30 (P307532-06) Soil	Sampled: 07/28/0	03 10:44	Received	07/28/0	3 17:25					
Unknown alkane 1	300		10	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
35D-SB26-35 (P307532-07) Soil	Sampled: 07/28/0	03 11:05	Received	07/28/0	3 17:25					
No TICs found	ND		10	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
35D-SB26-35D (P307532-08) So	il Sampled: 07/28	3/03 11:0)5 Receive	d: 07/28	3/03 17:25					
No TICs found	ND		10	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
35D-SB26-40 (P307532-09) Soil	Sampled: 07/28/0)3 11:39	Received	07/28/0	3 17:25					
No TICs found	ND		10	ug/kg	1	3070671	07/31/03	08/07/03	EPA 8270C	
35D-SB26-45 (P307532-10) Soil	Sampled: 07/28/0	03 12:02	Received	07/28/0	3 17:25					
No TICs found	ND		10	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P307532 **Reported:** 08/15/03 14:38

Tentatively Identified Compounds by GC/MS Sequoia Analytical - Petaluma

Analyte	Result	I MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-2.5 (P307532-11) Soil	Sampled: 07/2	8/03 15:48	Received	: 07/28/	03 17:25					
Unknown alkane 1	300		10	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
35D-SB26-20E (P307532-12) Wa	nter Sampled: 0	7/28/03 15:5	4 Recei	ved: 07/2	28/03 17:25	i				
No TICs found	ND		10	ug/l	1	3070657	07/30/03	08/07/03	EPA 8270C	

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-6 (P307532-01) Soil	Sampled: 07/25	/03 16:06	Received:	07/28/03	17:25					
Acenaphthene	ND	8.7	330	ug/kg	1	3070671	07/31/03	08/07/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	9.3	330	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2, . Dimirophonoi	ND	10	1700							

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

		Beq		-						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-6 (P307532-01) Soil	Sampled: 07/25	/03 16:06	Received:	07/28/03	17:25					
2,4-Dinitrotoluene	ND	20	330	ug/kg	1	3070671	07/31/03	08/07/03	EPA 8270C	
2,6-Dinitrotoluene	ND	13	330	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	11	330	"	"	"	"	"	"	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	"	"	
Hexachlorobenzene	ND	15	330	"	"	"	"	**	"	
Hexachlorobutadiene	ND	17	330	"	"	"	"	**	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
Isophorone	ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
2-Methylphenol	ND	16	330	"	"	"	"	**	"	
4-Methylphenol	ND	11	330	"	"	"	"	**	"	
Naphthalene	ND	13	330	"	"	"	"	"	"	
2-Nitroaniline	ND	17	1700	"	"	"	"	"	"	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
Nitrobenzene	ND	16	330	"	"	"	"	"	"	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	"	"	"	"	"	"	
Pentachlorophenol	ND	12	1700	,,	"	"	"	"	"	
Phenanthrene	ND	14	330	,,	"	"	"	"	"	
Phenol	ND	12	330	"	"	"	"	"	"	
Pyrene	ND	12	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND ND	15	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND ND	13	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND ND	9.4	330	,,	"	"	"	"	"	
***************************************	ND									
Surrogate: 2-Fluorophenol		63 %	11-12			"	"	"	"	
Surrogate: Phenol-d6		72 %	16-13			"	"	"	"	
Surrogate: Nitrobenzene-d5		76 %	16-12			"	"	"	"	
Surrogate: 2-Fluorobiphenyl		77 %	28-13			"	"	"	"	
Surrogate: 2,4,6-Tribromophenol	l	77 %	51-14	14		"	"	"	"	

Sequoia Analytical - Petaluma

P307532

Reported:

Environmental Resources Management Project: Aerojet RI/FS 2525 Natomas Park Drive, Suite 350 Project Number: N/A Project Manager: Bruce Lewis Sacramento CA, 95833 08/15/03 14:38

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Anglista	Dogult	MDL	Reporting Limit	Unita	Dilution	Datah	Dronovod	Analyze	Mathad	Notes
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-6 (P307532-01) Soil	Sampled: 07/25/	03 16:06	Received:	07/28/03	17:25					
Surrogate: Terphenyl-d14		99 %	64-11	19		3070671	07/31/03	08/07/03	EPA 8270C	
35D-SB26-11 (P307532-02) Soil	Sampled: 07/25	5/03 16:19	Received	: 07/28/03	3 17:25					
Acenaphthene	ND	8.7	330	ug/kg	1	3070671	07/31/03	08/07/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	9.3	330	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	,,	"	"	"	"	"	
Dimenty i pinnarate	ND	1.1	550							

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

SOM 121111 1 0 1111 1 0 1111 1 1 1 1 1 1 1											
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
35D-SB26-11 (P307532-02) Soil	Sampled: 07/2	5/03 16:19	Received	: 07/28/03	3 17:25						
4,6-Dinitro-2-methylphenol	ND	17	1700	ug/kg	1	3070671	07/31/03	08/07/03	EPA 8270C		
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"		
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"		
2,6-Dinitrotoluene	ND	13	330	"	"	"	"	"	"		
Di-n-octyl phthalate	ND	11	330	"	"	"	"	"	"		
Fluoranthene	ND	11	330	"	"	"	"	"	"		
Fluorene	ND	7.9	330	"	"	"	"	"	"		
Hexachlorobenzene	ND	15	330	"	"	"	"	"	"		
Hexachlorobutadiene	ND	17	330	"	"	"	"	"	"		
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"		
Hexachloroethane	ND	17	330	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"		
Isophorone	ND	14	330	"	"	"	"	"	"		
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"		
2-Methylphenol	ND	16	330	"	"	"	"	"	"		
4-Methylphenol	ND	11	330	"	"	"	"	"	"		
Naphthalene	ND	13	330	"	"	"	"	"	"		
2-Nitroaniline	ND	17	1700	"	"	"	"	"	"		
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"		
4-Nitroaniline	ND	22	1700	"	,,	"	,,	"	"		
Nitrobenzene	ND	16	330	"	,,	"	,,	"	"		
2-Nitrophenol	ND	14	330	"	"	"	"	"	"		
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND ND	2 <i>3</i> 16	330	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"		
N-Nitrosodi-n-propylamine	ND	15	330	"	"	"	"	"	"		
Pentachlorophenol	ND ND	12	1700	"	"	"	"	"	"		
Phenanthrene	ND ND	14	330	"	,,	"	,,	,,	"		
Phenol	ND ND	12	330	"	,,	"	"	"	"		
	ND ND	12	330	"	,,	"	,,	,,	"		
Pyrene				,,	,,	,,	,,	,,	"		
1,2,4-Trichlorobenzene	ND ND	15	330	"	,,	"	,,	"	"		
2,4,5-Trichlorophenol	ND	14	330	"	,,	"	"	"	"		
2,4,6-Trichlorophenol	ND	9.4	330		"						
Surrogate: 2-Fluorophenol		67 %	11-12	20		"	"	"	"		
Surrogate: Phenol-d6		76 %	16-13			"	"	"	"		
Surrogate: Nitrobenzene-d5		80 %	16-12	26		"	"	"	"		

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-11 (P307532-02) Soil	Sampled: 07/2	25/03 16:19	Received	: 07/28/0	3 17:25					
Surrogate: 2-Fluorobiphenyl		82 %	28-13			3070671	07/31/03	08/07/03	EPA 8270C	
Surrogate: 2,4,6-Tribromophenol		85 %	51-14			"	"	"	"	
Surrogate: Terphenyl-d14		107 %	64-11	19		"	"	"	"	
35D-SB26-15E (P307532-03) Wat	ter Sampled:	07/25/03 16	31 Recei	ved: 07/2	8/03 17:25	;				
Acenaphthene	ND	1.3	11	ug/l	1	3070657	07/30/03	08/07/03	EPA 8270C	
Acenaphthylene	ND	1.5	11	"	"	"	"	"	"	
Anthracene	ND	0.63	11	"	"	"	"	"	"	
Azobenzene	ND	0.66	21	"	"	"	"	"	"	
Benzidine	ND	3.3	53	"	"	"	"	"	"	
Benzoic acid	ND	4.1	53	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.46	11	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	1.2	11	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.67	11	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.92	11	"	"	"	"	"	"	
Benzyl alcohol	ND	4.1	21	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	1.2	11	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	1.6	11	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	1.6	11	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	3.0	11	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.74	11	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	2.8	11	"	"	"	"	"	"	
4-Chloroaniline	ND	0.58	21	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	2.4	21	"	"	"	"	"	"	
2-Chloronaphthalene	ND	1.5	11	"	"	"	"	"	"	
2-Chlorophenol	ND	0.33	11	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	1.0	11	"	"	"	"	"	"	
Chrysene	ND	0.47	11	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.58	11	"	"	"	"	"	"	
Dibenzofuran	ND	1.2	11	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	1.2	11	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.9	11	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.9	11	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.8	11	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	3.0	21	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	0.49	11	"	"	"	"	"	"	
Diethyl phthalate	ND	0.44	11	"	"	"	"	"	"	
Zivinji pimimimo	1112	0.77	11							

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Sampled: 07/25/03 16:31 Received: 07/28/03 17:25 Repairs of the content			Sequoi								
2.4-Dimethylphenol	Analyte	Result			Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Dimethyl phthalate	35D-SB26-15E (P307532-03) Water	Sampled:	07/25/03 16:31	Recei	ved: 07/2	8/03 17:25					
4,6-Dinitro-2-methylphenol ND 3.6 53 """"""""""""""""""""""""""""""""""""	2,4-Dimethylphenol	ND	1.4	11	ug/l	1	3070657	07/30/03	08/07/03	EPA 8270C	
2,4-Dinitrophenol ND 2,4 53 "	Dimethyl phthalate	ND	0.59	11	"	"	"	"	"	"	
2.4-Dinitrotoluene ND 0.86 11 "	4,6-Dinitro-2-methylphenol	ND	3.6	53	"	"	"	"	"	"	
2,6-Dinitrotoluene ND 0.80 11 "	2,4-Dinitrophenol	ND	2.4	53	"	"	"	"	"	"	
Di-n-octyl phthalate	2,4-Dinitrotoluene	ND	0.86	11	"	"	"	"	"	"	
Fluoranthene ND 0.46	2,6-Dinitrotoluene	ND	0.80	11	"	"	"	"	"	"	
Fluorene ND 1.1 11 " " " " " " " "	Di-n-octyl phthalate	ND	0.85	11	"	"	"	"	"	"	
Hexachlorobenzene ND 0.83 11 " " " " " " " "	Fluoranthene	ND	0.46	11	"	"	"	"	"	"	
Hexachlorobutadiene ND 1.6 11 " " " " " " " "	Fluorene	ND	1.1	11	"	"	"	"	"	"	
Hexachlorocyclopentadiene ND 0.33 11 " " " " " " " " " " " " " " " " "	Hexachlorobenzene	ND	0.83	11	"	"	"	"	"	"	
Hexachloroethane ND 1.8 11 " " " " " " " "	Hexachlorobutadiene	ND	1.6	11	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene ND 0.64 11 "	Hexachlorocyclopentadiene	ND	0.33	11	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene ND 0.64 11 "	Hexachloroethane	ND	1.8	11	"	"	"	"	"	"	
Isophorone ND 0.75 11 " " " " " " " "	Indeno (1,2,3-cd) pyrene	ND	0.64	11	"	"	"	"	"	"	
2-Methylphenol ND 3.6 11 "		ND	0.75	11	"	"	"	"	"	"	
2-Methylphenol ND 3.6 11 "	2-Methylnaphthalene	ND	1.5	11	"	"	"	"	"	"	
4-Methylphenol ND 3.2 11 "		ND	3.6	11	"	"	"	"	"	"	
Naphthalene ND 1.7 11 "		ND	3.2	11	"	"	"	"	"	"	
2-Nitroaniline ND 0.73 53 "		ND	1.7	11	"	"	"	"	"	"	
4-Nitroaniline ND 0.64 53 "		ND	0.73	53	"	"	"	"	"	"	
4-Nitroaniline ND 0.64 53 "	3-Nitroaniline	ND	0.57	53	"	"	"	"	"	"	
2-Nitrophenol ND 0.44 11 "	4-Nitroaniline	ND		53	"	"	"	"	"	"	
4-Nitrophenol ND 0.54 53 "	Nitrobenzene	ND	1.4	11	"	"	"	"	"	"	
4-Nitrophenol ND 0.54 53 "	2-Nitrophenol	ND	0.44	11	"	"	"	"	"	"	
N-Nitrosodimethylamine ND 1.5 21 " </td <td>-</td> <td>ND</td> <td>0.54</td> <td>53</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	-	ND	0.54	53	"	"	"	"	"	"	
N-Nitrosodiphenylamine ND 4.1 11 " </td <td>-</td> <td>ND</td> <td>1.5</td> <td>21</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	-	ND	1.5	21	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine ND 0.61 11 " " " " " " " " " " " " " " " " "	-	ND			"	"	"	"	"	"	
Pentachlorophenol ND 3.2 53 " " " " " " "		ND	0.61	11	"	"	"	"	"	"	
					"	"	"	"	"	"	
Phenanthrene ND 0.59 11 " " " " " "	Phenanthrene	ND	0.59	11	"	"	"	"	"	"	
Phenol ND 0.51 11 " " " " "					"	"	"	"	"	"	
Pyrene ND 0.29 11 " " " " "					"	"	"	"	"	"	
Pyridine ND 4.0 11 " " " " " "	•				"	"	"	"	"	"	
1,2,4-Trichlorobenzene ND 1.8 11 " " " " " " "	3				"	"	"	"	"	"	
2,4,5-Trichlorophenol ND 0.64 11 " " " " " "					"	"	"	"	"	"	
2,4,6-Trichlorophenol ND 0.33 11 " " " " " "	_				"	"	"	"	"	"	

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Surrogate: Phenol-d6	Analyte	Result	R MDL	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Surrogate: Phenol-d6	35D-SB26-15E (P307532-03) Water	Sampled:	07/25/03 16:31	Recei	ved: 07/2	8/03 17:25	•				
Surrogate: Pleususus	Surrogate: 2-Fluorophenol		63 %	15-10	03		3070657	07/30/03	08/07/03	EPA 8270C	
Surrogate: 2-Fluorobiphenvl	Surrogate: Phenol-d6		71 %	18-11	15		"	"	"	"	
Surrogate: 2,4.6-Tribromophenol	Surrogate: Nitrobenzene-d5		90 %	39-10)3		"	"	"	"	
Surrogate: Terphenyl-dl4	Surrogate: 2-Fluorobiphenyl		91 %	40-12	24		"	"	"	"	
Samplethene ND 8.7 330 ug/kg 1 3070671 07/31/03 08/08/03 EPA 8270C	Surrogate: 2,4,6-Tribromophenol		91 %	11-14	42		"	"	"	"	
Acenaphthene ND 8.7 330 ug/kg 1 3070671 07/31/03 08/08/03 EPA 8270C Acenaphthylene ND 7.6 330 " " " " " " " " " " " " Azobenzene ND 14 330 " " " " " " " " " " " " " " " " " "	Surrogate: Terphenyl-d14		65 %	56-13	39		"	"	"	"	
Acenaphthylene ND 7.6 330 " " " " " " " " " Anthracene ND 14 330 " " " " " " " " " " " " " " " " " "	35D-SB26-15 (P307532-04) Soil S	ampled: 07/2	25/03 16:49 F	Received	: 07/28/03	3 17:25					
Anthracene ND 14 330 " " " " " " " " " Azobenzene ND 1700 1700 " " " " " " " " " " " " " " " " " "	Acenaphthene	ND	8.7	330		1	3070671	07/31/03	08/08/03	EPA 8270C	
Radiulacele ND 170 170 1700 1700 " " " " " " " " " " " " " " " " " "	Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Benzoicacid Benzoicacid ND 2.7 1700 " " " " " " " " " " " " Benzoicacid Benzoicacid ND 7.6 330 " " " " " " " " " " " " " " " " " "	Anthracene	ND	14	330	"	"	"	"	"	"	
Benzoi cacid Benzoi (a) anthracene Benzo (b+k) fluoranthene (total) ND 13 330 " " " " " " " " " " " " " " " " "	Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzo (a) anthracene ND ND ND ND ND ND ND ND ND N	Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzo (a) alininaceie ND	Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (g,h,i) perylene	Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (a) pyrene ND 10 330 "	Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzyl alcohol ND 11 660 " " " " " " " " " Bis(2-chloroethoxy)methane ND 9.1 330 " " " " " " " " " " " " Bis(2-chloroethoyl)ether ND 15 330 " " " " " " " " " " " " " " " " " "	Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Select S	Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Section Sect	Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether ND 16 330 """"""""""""""""""""""""""""""""	Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
4-Bromophenyl phenyl ether ND 13 330 " " " " " " " " " " 4-Chloroaniline ND 58 660 " " " " " " " " " " " " " " " " " "	Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Butyl benzyl phthalate	Bis(2-ethylhexyl)phthalate	ND	9.3	330	"	"	"	"	"	"	
4-Chloroaniline ND 58 660 " " " " " " " " " " " " " " " " " "	4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
4-Chloro-3-methylphenol ND 11 660 " " " " " " " " " " " 2-Chloronaphthalene ND 9.9 330 " " " " " " " " " " " " " " " " " "	Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
2-Chloronaphthalene ND 9.9 330 " " " " " " " " " " " 2-Chlorophenol ND 16 330 " " " " " " " " " " " " " " 4-Chlorophenyl phenyl ether ND 13 330 " " " " " " " " " " " " " " " " "	4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
2-Chlorophenol ND 16 330 " " " " " " " " " " " " " " " " " "	4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether ND 13 330 " " " " " " " " " " " " " " " " "	2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
Chrysene ND 11 330 " <t< td=""><td>2-Chlorophenol</td><td>ND</td><td>16</td><td>330</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene ND 18 330 "	4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Dibenzofuran ND 9.6 330 "	Chrysene	ND	11	330	"	"	"	"	"	"	
Dien-butyl phthalate ND 12 330 " " " " " " " " " 1,2-Dichlorobenzene ND 14 330 " " " " " " " " " " " " " " " " " "	Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
1,2-Dichlorobenzene ND 16 330 " " " " " " " " 1,3-Dichlorobenzene ND 14 330 " " " " " " " " " " " " " " " " " "	Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
1,2-Dichlorobenzene ND 16 330 " " " " " " " " " " 1,3-Dichlorobenzene ND 14 330 " " " " " " " " " " " " " " " " " "	Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,3-Dichlorobenzene ND 14 330 " " " " " " " "	1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
	1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
	1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-15 (P307532-04) Soil	Sampled: 07/2	5/03 16:49	Received	: 07/28/03	3 17:25					
3,3´-Dichlorobenzidine	ND	44	660	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	13	330	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	11	330	"	"	"	**	**	"	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	"	"	
Hexachlorobenzene	ND	15	330	"	"	"	"	"	"	
Hexachlorobutadiene	ND	17	330	"	"	"	**	**	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
Isophorone	ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
2-Methylphenol	ND	16	330	"	"	"	"	"	"	
4-Methylphenol	ND	11	330	"	"	"	"	"	"	
Naphthalene	ND	13	330	"	"	"	"	"	"	
2-Nitroaniline	ND	17	1700	"	"	"	**	"	"	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
Nitrobenzene	ND	16	330	"	"	"	"	"	"	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	,,	"	"	"	"	"	
N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	17	330	,,	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	,,	"	"	"	"	"	
Pentachlorophenol	ND ND	12	1700	"	"	"	"	"	"	
Phenanthrene	ND ND	14	330	"	"	"	"	"	"	
Phenol	ND ND	12	330	,,	"	"	"	"	"	
Pyrene	ND ND	12	330	,,	"	"	,,	,,	"	
•	ND ND	15	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	13	330							

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-15 (P307532-04) Soil	Sampled: 07/2	25/03 16:49	Received	: 07/28/03	3 17:25					
2,4,5-Trichlorophenol	ND	14	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		62 %	11-12	20		"	"	"	"	
Surrogate: Phenol-d6		71 %	16-13	30		"	"	"	"	
Surrogate: Nitrobenzene-d5		74 %	16-12	26		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		76 %	28-13	34		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		77 %	51-14	14		"	"	"	"	
Surrogate: Terphenyl-d14		96 %	64-11	19		"	"	"	"	
35D-SB26-30 (P307532-06) Soil	Sampled: 07/2	8/03 10:44	Received	: 07/28/03	3 17:25					
Acenaphthene	ND	8.7	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	65	9.3	330	"	"	"	"	"	"	J
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-30 (P307532-06) Soil	Sampled: 07/2	8/03 10:44	Received	: 07/28/03	3 17:25					
1,3-Dichlorobenzene	ND	14	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	**	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	**	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	13	330	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	11	330	"	"	"	"	"	"	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	"	"	
Hexachlorobenzene	ND	15	330	"	"	"	**	**	"	
Hexachlorobutadiene	ND	17	330	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	"	"	"	**	**	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
Isophorone	ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
2-Methylphenol	ND	16	330	"	"	"	**	**	"	
4-Methylphenol	ND	11	330	"	"	"	"	"	"	
Naphthalene	ND	13	330	"	"	"	"	"	"	
2-Nitroaniline	ND	17	1700	"	"	"	"	"	"	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
Nitrobenzene	ND	16	330	"	"	"	"	"	"	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	"	"	"	"	"	"	
Pentachlorophenol	ND	12	1700	"	"	"	"	"	"	
Phenanthrene	ND	14	330	"	"	"	"	"	"	
Phenol	ND	12	330	"	"	"	"	"	"	
1 1101101	ND	12	550							

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

		1		•						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-30 (P307532-06) Soil	Sampled: 07/2	28/03 10:44	Received	: 07/28/03	3 17:25					
Pyrene	ND	12	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		59 %	11-12	20		"	"	"	"	
Surrogate: Phenol-d6		68 %	16-13	30		"	"	"	"	
Surrogate: Nitrobenzene-d5		67 %	16-12	26		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		69 %	28-13	34		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		78 %	51-14	14		"	"	"	"	
Surrogate: Terphenyl-d14		100 %	64-11	19		"	"	"	"	
35D-SB26-35 (P307532-07) Soil	Sampled: 07/2	28/03 11:05	Received	: 07/28/03	3 17:25					
Acenaphthene	ND	8.7	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	**	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	9.3	330	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-35 (P307532-07) Soil	Sampled: 07/2	8/03 11:05	Received	: 07/28/03	3 17:25					
Dibenzofuran	ND	9.6	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	13	330	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	11	330	"	"	"	"	"	"	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	"	"	
Hexachlorobenzene	ND	15	330	"	"	"	"	"	"	
Hexachlorobutadiene	ND	17	330	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
Isophorone	ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
2-Methylphenol	ND	16	330	"	"	"	"	"	"	
4-Methylphenol	ND	11	330	"	"	"	"	"	"	
Naphthalene	ND	13	330	"	"	"	"	"	"	
2-Nitroaniline	ND	17	1700	"	"	"	"	"	"	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
Nitrobenzene	ND	16	330	"	"	"	"	"	"	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	17	330	,,	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	,,	"	"	"	"	"	
11-11th Osodi-n-propyramine	ND	13	330							

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-35 (P307532-07) Soil	Sampled: 07/2	28/03 11:05	Received	: 07/28/03	3 17:25					
Pentachlorophenol	ND	12	1700	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
Phenanthrene	ND	14	330	"	"	"	"	"	"	
Phenol	ND	12	330	"	"	"	"	"	"	
Pyrene	ND	12	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		65 %	11-12	20		"	"	"	"	
Surrogate: Phenol-d6		74 %	16-13	30		"	"	"	"	
Surrogate: Nitrobenzene-d5		77 %	16-12	26		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		77 %	28-13	34		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		76 %	51-14	14		"	"	"	"	
Surrogate: Terphenyl-d14		99 %	64-11	19		"	"	"	"	
35D-SB26-35D (P307532-08) Soi	l Sampled: 07	//28/03 11:0	5 Receive	ed: 07/28/	03 17:25					
Acenaphthene	ND	8.7	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	9.3	330	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
-										

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

		Seque		-						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-35D (P307532-08) Soil	Sampled: 07	//28/03 11:05	Receive	ed: 07/28/	03 17:25					
4-Chlorophenyl phenyl ether	ND	13	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	**	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	**	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	13	330	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	11	330	"	"	"	"	"	"	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	**	"	
Hexachlorobenzene	ND	15	330	"	"	"	"	"	"	
Hexachlorobutadiene	ND	17	330	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	**	"	
Isophorone	ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
2-Methylphenol	ND	16	330	"	"	"	"	"	"	
4-Methylphenol	ND	11	330	"	"	"	"	**	"	
Naphthalene	ND	13	330	"	"	"	"	"	"	
2-Nitroaniline	ND	17	1700	"	"	"	"	"	"	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
Nitrobenzene	ND	16	330	"	"	"	"	"	"	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
. Tataophenoi	ND	23	1,00							

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

		-		-						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-35D (P307532-08) Soil	Sampled: 07	//28/03 11:05	Receive	ed: 07/28/	03 17:25					
N-Nitrosodimethylamine	ND	16	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	"	"	"	"	"	"	
Pentachlorophenol	ND	12	1700	"	"	"	"	"	"	
Phenanthrene	ND	14	330	"	"	"	"	"	"	
Phenol	ND	12	330	"	"	"	"	"	"	
Pyrene	ND	12	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		57 %	11-12	20		"	"	"	"	
Surrogate: Phenol-d6		65 %	16-13	30		"	"	"	"	
Surrogate: Nitrobenzene-d5		66 %	16-12	26		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		68 %	28-13	34		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		74 %	51-14	14		"	"	"	"	
Surrogate: Terphenyl-d14		99 %	64-11	19		"	"	"	"	
35D-SB26-40 (P307532-09) Soil	Sampled: 07/2	28/03 11:39	Received	: 07/28/03	3 17:25					
Acenaphthene	ND	8.7	330	ug/kg	1	3070671	07/31/03	08/07/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	9.3	330	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
	1,2	11	550							
4-Chloroaniline	ND	58	660	"	"	"	"	"	**	

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-40 (P307532-09) Soil	Sampled: 07/28	8/03 11:39	Received	: 07/28/03	3 17:25					
4-Chloro-3-methylphenol	ND	11	660	ug/kg	1	3070671	07/31/03	08/07/03	EPA 8270C	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	**	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	**	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	**	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	**	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	13	330	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	11	330	"	"	"	"	"	"	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	"	"	
Hexachlorobenzene	ND	15	330	"	"	"	"	"	"	
Hexachlorobutadiene	ND	17	330	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
Isophorone	ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
2-Methylphenol	ND	16	330	"	"	"	"	"	"	
4-Methylphenol	ND	11	330	"	"	"	"	"	"	
Naphthalene	ND	13	330	"	"	"	"	"	"	
2-Nitroaniline	ND	17	1700	"	"	"	"	"	"	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
. Taloumino	1112	22	1700							

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

	.	1.001	Reporting	** .	5 11.1		.			
Analyte	Result	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-40 (P307532-09) Soil	Sampled: 07/2	28/03 11:39	Received	: 07/28/03	3 17:25					
Nitrobenzene	ND	16	330	ug/kg	1	3070671	07/31/03	08/07/03	EPA 8270C	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	"	"	"	"	"	"	
Pentachlorophenol	ND	12	1700	"	"	"	"	"	"	
Phenanthrene	ND	14	330	"	"	"	"	"	"	
Phenol	ND	12	330	"	"	"	"	"	"	
Pyrene	ND	12	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		64 %	11-12	20		"	"	"	"	
Surrogate: Phenol-d6		71 %	16-13	30		"	"	"	"	
Surrogate: Nitrobenzene-d5		76 %	16-12	26		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		76 %	28-13	34		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		78 %	51-14	14		"	"	"	"	
Surrogate: Terphenyl-d14		100 %	64-11	19		"	"	"	"	
35D-SB26-45 (P307532-10) Soil	Sampled: 07/2	28/03 12:02	Received	: 07/28/03	3 17:25					
Acenaphthene	ND	8.7	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	15	330	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND ND	16	330	"	"	"	"	,,	"	
Bis(2-ethylhexyl)phthalate	ND ND	9.3	330	"	"	"	"	"	"	
Dis(2 chrymexy)/philadate	110	7.5	330							

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-45 (P307532-10) Soil	Sampled: 07/2	8/03 12:02	Received	: 07/28/03	3 17:25					
4-Bromophenyl phenyl ether	ND	13	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	13	330	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	11	330	"	"	"	"	"	"	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	"	"	
Hexachlorobenzene	ND	15	330	"	"	"	"	"	"	
Hexachlorobutadiene	ND	17	330	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	,,	"	"	"	,,	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
Isophorone	ND ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND ND	10	330	"	,,	"	"	"	"	
2-Methylphenol	ND ND	16	330	,,	,,	"	"	"	"	
4-Methylphenol	ND ND	10	330	,,	,,	"	,,	"	"	
	ND ND	13	330	,,	,,	"	,,	,,	"	
Naphthalene	ND	13	330							

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-45 (P307532-10) Soil	Sampled: 07/2	8/03 12:02	Received	: 07/28/03	3 17:25					
2-Nitroaniline	ND	17	1700	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
Nitrobenzene	ND	16	330	"	"	"	"	"	"	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	"	"	"	"	"	"	
Pentachlorophenol	ND	12	1700	"	"	"	"	"	"	
Phenanthrene	ND	14	330	"	"	"	"	"	"	
Phenol	ND	12	330	"	"	"	"	"	"	
Pyrene	ND	12	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		54 %	11-12	20		"	"	"	"	
Surrogate: Phenol-d6		63 %	16-13	30		"	"	"	"	
Surrogate: Nitrobenzene-d5		60 %	16-12	26		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		55 %	28-13	34		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		63 %	51-14	14		"	"	"	"	
Surrogate: Terphenyl-d14		94 %	64-11	19		"	"	"	"	
35D-SB26-2.5 (P307532-11) Soil	Sampled: 07/2	28/03 15:48	Received	1: 07/28/0	3 17:25					
Acenaphthene	ND	8.7	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
Acenaphthylene	ND	7.6	330	"	"	"	"	"	"	
Anthracene	ND	14	330	"	"	"	"	"	"	
Azobenzene	ND	20	330	"	"	"	"	"	"	
Benzidine	ND	1700	1700	"	"	"	"	"	"	
Benzoic acid	ND	2.7	1700	"	"	"	"	"	"	
Benzo (a) anthracene	ND	7.6	330	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	13	330	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	8.8	330	"	"	"	"	"	"	
Benzo (a) pyrene	ND	10	330	"	"	"	"	"	"	
Benzyl alcohol	ND	11	660	"	"	"	**	"	"	
Bis(2-chloroethoxy)methane	ND	9.1	330	"	"	"	"	"	"	

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-2.5 (P307532-11) Soil	Sampled: 07/	28/03 15:48	Received	1: 07/28/0	3 17:25					
Bis(2-chloroethyl)ether	ND	15	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
Bis(2-chloroisopropyl)ether	ND	16	330	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	39	9.3	330	"	"	"	"	"	"	J
4-Bromophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	11	330	"	"	"	"	"	"	
4-Chloroaniline	ND	58	660	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	11	660	"	"	"	"	"	"	
2-Chloronaphthalene	ND	9.9	330	"	"	"	"	"	"	
2-Chlorophenol	ND	16	330	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	13	330	"	"	"	"	"	"	
Chrysene	ND	11	330	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	18	330	"	"	"	"	"	"	
Dibenzofuran	ND	9.6	330	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	12	330	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	16	330	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	14	330	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	15	330	"	"	"	"	"	"	
3,3'-Dichlorobenzidine	ND	44	660	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	15	330	"	"	"	"	"	"	
Diethyl phthalate	ND	14	330	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	36	330	"	"	"	"	"	"	
Dimethyl phthalate	ND	11	330	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	10	1700	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	20	330	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	13	330	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	11	330	"	"	"	"	"	"	
Fluoranthene	ND	11	330	"	"	"	"	"	"	
Fluorene	ND	7.9	330	"	"	"	"	"	"	
Hexachlorobenzene	ND	15	330	"	"	"	"	"	"	
Hexachlorobutadiene	ND	17	330	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	10	330	"	"	"	"	"	"	
Hexachloroethane	ND	17	330	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	"	"	"	"	"	
Isophorone	ND ND	14	330	"	"	"	"	"	"	
2-Methylnaphthalene	ND	10	330	"	"	"	"	"	"	
2-Methylphenol	ND ND	16	330	"	"	"	"	"	"	
2-iviculy iphichor	ND	10	330							

Sequoia Analytical - Petaluma

P307532 **Reported:** 08/15/03 14:38

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-2.5 (P307532-11) Soil	Sampled: 07/2	28/03 15:48	Received	07/28/0	3 17:25					
4-Methylphenol	ND	11	330	ug/kg	1	3070671	07/31/03	08/08/03	EPA 8270C	
Naphthalene	ND	13	330	"	"	"	"	"	"	
2-Nitroaniline	ND	17	1700	"	"	"	"	"	"	
3-Nitroaniline	ND	18	1700	"	"	"	"	"	"	
4-Nitroaniline	ND	22	1700	"	"	"	"	"	"	
Nitrobenzene	ND	16	330	"	"	"	"	"	"	
2-Nitrophenol	ND	14	330	"	"	"	"	"	"	
4-Nitrophenol	ND	23	1700	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	16	330	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	17	330	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	15	330	"	"	"	"	"	"	
Pentachlorophenol	ND	12	1700	"	"	"	"	"	"	
Phenanthrene	ND	14	330	"	"	"	"	"	"	
Phenol	ND	12	330	"	"	"	"	"	"	
Pyrene	ND	12	330	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	15	330	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	14	330	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	9.4	330	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		54 %	11-120	9		"	"	"	"	
Surrogate: Phenol-d6		66 %	16-13	9		"	"	"	"	
Surrogate: Nitrobenzene-d5		61 %	16-120	5		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		74 %	28-13	4		"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		83 %	51-14	4		"	"	"	"	
Surrogate: Terphenyl-d14		92 %	64-11	9		"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P307532 **Reported:** 08/15/03 14:38

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	Rej MDL	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-20E (P307532-12) Water	Sampled:	07/28/03 15:54	Recei	ved: 07/2	8/03 17:25					
Acenaphthene	ND	1.2	10	ug/l	1	3070657	07/30/03	08/07/03	EPA 8270C	
Acenaphthylene	ND	1.4	10	"	"	"	"	"	"	
Anthracene	ND	0.61	10	"	"	"	"	"	"	
Azobenzene	ND	0.64	20	"	"	"	"	"	"	
Benzidine	ND	3.2	51	"	"	"	"	"	"	
Benzoic acid	ND	3.9	51	"	"	"	"	"	"	
Benzo (a) anthracene	ND	0.44	10	"	"	"	"	"	"	
Benzo (b+k) fluoranthene (total)	ND	1.2	10	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	0.65	10	"	"	"	"	"	"	
Benzo (a) pyrene	ND	0.88	10	"	"	"	"	"	"	
Benzyl alcohol	ND	3.9	20	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	1.1	10	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	1.5	10	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	1.5	10	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	2.9	10	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	0.71	10	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	2.7	10	"	"	"	"	"	"	
4-Chloroaniline	ND	0.56	20	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	2.3	20	"	"	"	"	"	"	
2-Chloronaphthalene	ND	1.4	10	"	"	"	"	"	"	
2-Chlorophenol	ND	0.31	10	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	0.98	10	"	"	"	"	"	"	
Chrysene	ND	0.45	10	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	0.56	10	"	"	"	"	"	"	
Dibenzofuran	ND	1.1	10	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	1.1	10	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.8	10	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.8	10	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.8	10	"	"	"	"	"	"	
3,3´-Dichlorobenzidine	ND	2.9	20	"	"	,,	"	"	"	
2,4-Dichlorophenol	ND	0.47	10	"	"	"	"	"	"	
Diethyl phthalate	ND	0.42	10	"	"	"	"	"	"	
2,4-Dimethylphenol	ND ND	1.4	10	"	"	.,	"	"	"	
Dimethyl phthalate	ND ND	0.57	10	"	"	,,	"	"	"	
4,6-Dinitro-2-methylphenol	ND ND	3.4	51	"	"	,,	"	"	"	
2,4-Dinitrophenol	ND ND	2.3	51	"	"	,,	"	"	"	
2,4-Dilitiophenoi	ND	2.3	91							

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	MDL Re	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-20E (P307532-12) Water	Sampled:	07/28/03 15:54	Receiv	ved: 07/2	8/03 17:25	1				
2,4-Dinitrotoluene	ND	0.83	10	ug/l	1	3070657	07/30/03	08/07/03	EPA 8270C	
2,6-Dinitrotoluene	ND	0.77	10	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	0.82	10	"	"	"	"	"	"	
Fluoranthene	ND	0.44	10	"	"	"	"	"	"	
Fluorene	ND	1.0	10	"	"	"	"	"	"	
Hexachlorobenzene	ND	0.80	10	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.5	10	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	0.31	10	"	"	"	"	"	"	
Hexachloroethane	ND	1.7	10	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	0.62	10	"	"	"	"	"	"	
Isophorone	ND	0.72	10	"	"	"	"	"	"	
2-Methylnaphthalene	ND	1.4	10	"	"	"	"	"	"	
2-Methylphenol	ND	3.4	10	"	"	"	"	**	"	
4-Methylphenol	ND	3.0	10	"	"	"	"	**	"	
Naphthalene	ND	1.6	10	"	"	"	"	"	"	
2-Nitroaniline	ND	0.70	51	"	"	"	"	"	"	
3-Nitroaniline	ND	0.55	51	"	"	"	"	"	"	
4-Nitroaniline	ND	0.62	51	"	"	"	"	"	"	
Nitrobenzene	ND	1.3	10	"	"	"	"	"	"	
2-Nitrophenol	ND	0.42	10	"	"	"	"	"	"	
4-Nitrophenol	ND	0.52	51	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	1.5	20	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	3.9	10	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	0.59	10	"	"	"	"	"	"	
Pentachlorophenol	ND	3.1	51	"	,,	"	"	"	"	
Phenanthrene	ND	0.57	10	"	,,	"	"	"	"	
Phenol	ND	0.37	10	"	"	"	"	"	"	
Pyrene	ND	0.48	10	"	,,	"	"	"	"	
Pyridine	ND ND	3.8	10	"	,,	"	"	"	"	
1,2,4-Trichlorobenzene	ND ND	3.8 1.7	10	"	,,	"	"	"	"	
2,4,5-Trichlorophenol	ND ND	0.62	10	"	,,	"	"	"	"	
•	ND ND	0.62	10	"	,,	"	"	"	"	
2,4,6-Trichlorophenol	ND									
Surrogate: 2-Fluorophenol		64 %	15-10			"	"	"	"	
Surrogate: Phenol-d6		73 %	18-11			"	"	"	"	
Surrogate: Nitrobenzene-d5		90 %	39-10			"	"	"	"	
Surrogate: 2-Fluorobiphenyl		92 %	40-12	4		"	"	"	"	

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C Sequoia Analytical - Petaluma

Analyte	Result	R MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
35D-SB26-20E (P307532-12) Water	Sampled: (07/28/03 15:5	4 Receiv	ed: 07/2	8/03 17:25					
Surrogate: 2,4,6-Tribromophenol		92 %	11-142	2		3070657	07/30/03	08/07/03	EPA 8270C	
Surrogate: Terphenyl-d14		103 %	56-139	9		"	"	"	"	

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P307532 **Reported:** 08/15/03 14:38

Tentatively Identified Compounds by GC/MS - Quality Control Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070657 - EPA 3520B l	LiqLiquid										
Blank (3070657-BLK1)					Prepared:	07/30/03	Analyzed	: 08/07/03			
No TICs found	ND		10	ug/l							
Batch 3070671 - EPA 3550A	Sonication										
Blank (3070671-BLK1)					Prepared:	07/31/03	Analyzed	: 08/07/03			
No TICs found	ND		10	ug/kg	-		-				

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P307532 **Reported:** 08/15/03 14:38

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Blank (3070657-BLK1)					Prepared: 07/30/03 Analyzed: 08/07/03
Acenaphthene	ND	1.2	10	ug/l	
Acenaphthylene	ND	1.4	10	"	
Anthracene	ND	0.60	10	"	
Azobenzene	ND	0.63	20	"	
Benzidine	ND	3.2	50	"	
Benzoic acid	ND	3.9	50	"	
Benzo (a) anthracene	ND	0.44	10	"	
Benzo (b+k) fluoranthene (total)	ND	1.1	10	"	
Benzo (g,h,i) perylene	ND	0.64	10	"	
Benzo (a) pyrene	ND	0.87	10	"	
Benzyl alcohol	ND	3.9	20	"	
Bis(2-chloroethoxy)methane	ND	1.1	10	"	
Bis(2-chloroethyl)ether	ND	1.5	10	"	
Bis(2-chloroisopropyl)ether	ND	1.5	10	"	
Bis(2-ethylhexyl)phthalate	ND	2.8	10	"	
4-Bromophenyl phenyl ether	ND	0.70	10	"	
Butyl benzyl phthalate	ND	2.7	10	"	
4-Chloroaniline	ND	0.55	20	"	
4-Chloro-3-methylphenol	ND	2.3	20	"	
2-Chloronaphthalene	ND	1.4	10	"	
2-Chlorophenol	ND	0.31	10	"	
4-Chlorophenyl phenyl ether	ND	0.97	10	"	
Chrysene	ND	0.45	10	"	
Dibenz (a,h) anthracene	ND	0.55	10	"	
Dibenzofuran	ND	1.1	10	"	
Di-n-butyl phthalate	ND	1.1	10	"	
1,2-Dichlorobenzene	ND	1.8	10	"	
1,3-Dichlorobenzene	ND	1.8	10	"	
1,4-Dichlorobenzene	ND	1.8	10	"	
3,3´-Dichlorobenzidine	ND	2.9	20	"	
2,4-Dichlorophenol	ND	0.47	10	"	
Diethyl phthalate	ND	0.42	10	"	
2,4-Dimethylphenol	ND	1.4	10	"	
Dimethyl phthalate	ND	0.56	10	"	

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P307532 **Reported:** 08/15/03 14:38

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Batch 3070657	- EPA	3520B	LigLi	quid
---------------	-------	-------	-------	------

Blank (3070657-BLK1)					Prepared: 07/30/03 Analyzed: 08/07/03
4,6-Dinitro-2-methylphenol	ND	3.4	50	ug/l	
2,4-Dinitrophenol	ND	2.3	50	"	
2,4-Dinitrotoluene	ND	0.82	10	"	
2,6-Dinitrotoluene	ND	0.76	10	"	
Di-n-octyl phthalate	ND	0.81	10	"	
Fluoranthene	ND	0.44	10	"	
Fluorene	ND	1.0	10	"	
Hexachlorobenzene	ND	0.79	10	"	
Hexachlorobutadiene	ND	1.5	10	"	
Hexachlorocyclopentadiene	ND	0.31	10	"	
Hexachloroethane	ND	1.7	10	"	
Indeno (1,2,3-cd) pyrene	ND	0.61	10	"	
Isophorone	ND	0.71	10	"	
2-Methylnaphthalene	ND	1.4	10	"	
2-Methylphenol	ND	3.4	10	"	
4-Methylphenol	ND	3.0	10	"	
Naphthalene	ND	1.6	10	"	
2-Nitroaniline	ND	0.69	50	"	
3-Nitroaniline	ND	0.54	50	"	
4-Nitroaniline	ND	0.61	50	"	
Nitrobenzene	ND	1.3	10	"	
2-Nitrophenol	ND	0.42	10	"	
4-Nitrophenol	ND	0.51	50	"	
N-Nitrosodimethylamine	ND	1.4	20	"	
N-Nitrosodiphenylamine	ND	3.9	10	"	
N-Nitrosodi-n-propylamine	ND	0.58	10	"	
Pentachlorophenol	ND	3.1	50	"	
Phenanthrene	ND	0.56	10	"	
Phenol	ND	0.48	10	"	
Pyrene	ND	0.28	10	"	
Pyridine	ND	3.8	10	"	
1,2,4-Trichlorobenzene	ND	1.7	10	"	
2,4,5-Trichlorophenol	ND	0.61	10	"	
2,4,6-Trichlorophenol	ND	0.31	10	"	

Sequoia Analytical - Petaluma

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

Analyte Result MDL Limit Units Level Result %REC Limits RPD Limit Notes				Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3070657 - EPA 3520B LiqLiqui

Blank (3070657-BLK1)					Prepared: 07	7/30/03 Analyzed	d: 08/07/03			
Surrogate: 2-Fluorophenol	92.8			ug/l	150	62	15-103			
Surrogate: Phenol-d6	109			"	150	73	18-115			
Surrogate: Nitrobenzene-d5	86.9			"	100	87	39-103			
Surrogate: 2-Fluorobiphenyl	87.4			"	100	87	40-124			
Surrogate: 2,4,6-Tribromophenol	137			"	150	91	11-142			
Surrogate: Terphenyl-d14	121			"	100	121	56-139			
Laboratory Control Sample (3070	657-BS1)				Prepared: 07	7/30/03 Analyzed	d: 08/07/03			
Acenaphthene	106	1.2	10	ug/l	100	106	58-120			
4-Chloro-3-methylphenol	114	2.3	20	"	100	114	51-116			
2-Chlorophenol	94.7	0.31	10	"	100	95	28-111			
1,4-Dichlorobenzene	86.8	1.8	10	"	100	87	29-108			
2,4-Dinitrotoluene	123	0.82	10	"	100	123	60-114			Q-LIM
4-Nitrophenol	95.5	0.51	50	"	100	96	25-148			
N-Nitrosodi-n-propylamine	102	0.58	10	"	100	102	29-119			
Pentachlorophenol	108	3.1	50	"	100	108	40-131			
Phenol	85.8	0.48	10	"	100	86	22-117			
Pyrene	120	0.28	10	"	100	120	52-127			
1,2,4-Trichlorobenzene	97.7	1.7	10	"	100	98	24-131			
Surrogate: 2-Fluorophenol	117			"	150	78	15-103			
Surrogate: Phenol-d6	129			"	150	86	18-115			
Surrogate: Nitrobenzene-d5	102			"	100	102	39-103			
Surrogate: 2-Fluorobiphenyl	101			"	100	101	40-124			
Surrogate: 2,4,6-Tribromophenol	170			"	150	113	11-142			
Surrogate: Terphenyl-d14	118			"	100	118	56-139			
Laboratory Control Sample Dup (3070657-BSE	D1)			Prepared: 07	7/30/03 Analyzed	d: 08/07/03			
Acenaphthene	101	1.2	10	ug/l	100	101	58-120	5	27	
4-Chloro-3-methylphenol	111	2.3	20	"	100	111	51-116	3	30	
2-Chlorophenol	90.0	0.31	10	"	100	90	28-111	5	39	
1,4-Dichlorobenzene	79.6	1.8	10	"	100	80	29-108	9	41	
2,4-Dinitrotoluene	120	0.82	10	"	100	120	60-114	2	22	Q-LIM
4-Nitrophenol	90.2	0.51	50	"	100	90	25-148	6	44	
N-Nitrosodi-n-propylamine	97.9	0.58	10	"	100	98	29-119	4	44	
Pentachlorophenol	106	3.1	50	"	100	106	40-131	2	33	

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P307532 **Reported:** 08/15/03 14:38

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

Analyte	Result	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070657 - EPA 3520B Liq	Liquid										
Laboratory Control Sample Dup (3		1)			Prepared:	07/30/03	Analyzed	: 08/07/03			
Phenol	81.6	0.48	10	ug/l	100		82	22-117	5	33	
Pyrene	118	0.28	10	"	100		118	52-127	2	25	
1,2,4-Trichlorobenzene	90.7	1.7	10	"	100		91	24-131	7	48	
Surrogate: 2-Fluorophenol	111			"	150		74	15-103			
Surrogate: Phenol-d6	123			"	150		82	18-115			
Surrogate: Nitrobenzene-d5	99.0			"	100		99	39-103			
Surrogate: 2-Fluorobiphenyl	96.9			"	100		97	40-124			
Surrogate: 2,4,6-Tribromophenol	169			"	150		113	11-142			
Surrogate: Terphenyl-d14	115			"	100		115	56-139			
Batch 3070671 - EPA 3550A Son	ication										
Blank (3070671-BLK1)					Prepared:	07/31/03	Analyzed	: 08/08/03			
3-Methylphenol	ND	10	330	ug/kg							
Aniline	ND	10	330	"							
Acenaphthene	ND	8.7	330	"							
Acenaphthylene	ND	7.6	330	"							
Anthracene	ND	14	330	"							
Azobenzene	ND	20	330	"							
Benzidine	ND	1700	1700	"							
Benzoic acid	ND	2.7	1700	"							
Benzo (a) anthracene	ND	7.6	330	"							
Benzo (b+k) fluoranthene (total)	ND	13	330	"							
Benzo (g,h,i) perylene	ND	8.8	330	"							
Benzo (a) pyrene	ND	10	330	"							
Benzyl alcohol	ND	11	660	"							
Bis(2-chloroethoxy)methane	ND	9.1	330	"							
Bis(2-chloroethyl)ether	ND	15	330	"							
Bis(2-chloroisopropyl)ether	ND	16	330	"							
Bis(2-ethylhexyl)phthalate	ND	9.3	330	"							
4-Bromophenyl phenyl ether	ND	13	330	"							
Butyl benzyl phthalate	ND	11	330	"							
4-Chloroaniline	ND	58	660	"							
4-Chloro-3-methylphenol	ND	11	660	"							
2-Chloronaphthalene	ND	9.9	330	"							

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P307532 **Reported:** 08/15/03 14:38

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3070671 - EPA 3550A Sonication

Blank (3070671-BLK1)					Prepared: 07/31/03 Analyzed: 08/07/03
2-Chlorophenol	ND	16	330	ug/kg	
4-Chlorophenyl phenyl ether	ND	13	330	"	
Chrysene	ND	11	330	"	
Dibenz (a,h) anthracene	ND	18	330	"	
Dibenzofuran	ND	9.6	330	"	
Di-n-butyl phthalate	ND	12	330	"	
1,2-Dichlorobenzene	ND	16	330	"	
1,3-Dichlorobenzene	ND	14	330	"	
1,4-Dichlorobenzene	ND	15	330	"	
3,3´-Dichlorobenzidine	ND	44	660	"	
2,4-Dichlorophenol	ND	15	330	"	
Diethyl phthalate	ND	14	330	"	
2,4-Dimethylphenol	ND	36	330	"	
Dimethyl phthalate	ND	11	330	"	
4,6-Dinitro-2-methylphenol	ND	17	1700	"	
2,4-Dinitrophenol	ND	10	1700	"	
2,4-Dinitrotoluene	ND	20	330	"	
2,6-Dinitrotoluene	ND	13	330	"	
Di-n-octyl phthalate	ND	11	330	"	
Fluoranthene	ND	11	330	"	
Fluorene	ND	7.9	330	"	
Hexachlorobenzene	ND	15	330	"	
Hexachlorobutadiene	ND	17	330	"	
Hexachlorocyclopentadiene	ND	10	330	"	
Hexachloroethane	ND	17	330	"	
Indeno (1,2,3-cd) pyrene	ND	11	330	"	
Isophorone	ND	14	330	"	
2-Methylnaphthalene	ND	10	330	"	
2-Methylphenol	ND	16	330	"	
4-Methylphenol	ND	11	330	"	
Naphthalene	ND	13	330	"	
2-Nitroaniline	ND	17	1700	"	
3-Nitroaniline	ND	18	1700	"	
4-Nitroaniline	ND	22	1700	"	

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS Project Number: N/A Project Manager: Bruce Lewis

P307532 Reported: 08/15/03 14:38

RPD

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

Spike

Source

%REC

Reporting

3470

			Keporting		Spike	Source		70 KEC		KID	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3070671 - EPA 3550A Son	ication										
Blank (3070671-BLK1)					Prepared:	07/31/03	Analyzed	: 08/07/03			
Nitrobenzene	ND	16	330	ug/kg	•						
2-Nitrophenol	ND	14	330	"							
4-Nitrophenol	ND	23	1700	"							
N-Nitrosodimethylamine	ND	16	330	"							
N-Nitrosodiphenylamine	ND	17	330	"							
N-Nitrosodi-n-propylamine	ND	15	330	"							
Pentachlorophenol	ND	12	1700	"							
Phenanthrene	ND	14	330	"							
Phenol	ND	12	330	"							
Pyrene	ND	12	330	"							
1,2,4-Trichlorobenzene	ND	15	330	"							
2,4,5-Trichlorophenol	ND	14	330	"							
2,4,6-Trichlorophenol	ND	9.4	330	"							
Surrogate: 2-Fluorophenol	2910			"	5000		58	11-120			
Surrogate: Phenol-d6	3290			"	5000		66	16-130			
Surrogate: Nitrobenzene-d5	2280			"	3330		68	16-126			
Surrogate: 2-Fluorobiphenyl	2440			"	3330		73	28-134			
Surrogate: 2,4,6-Tribromophenol	3710			"	5000		74	51-144			
Surrogate: Terphenyl-d14	3320			"	3330		100	64-119			
Laboratory Control Sample (30706	671-BS1)				Prepared:	07/31/03	Analyzed	: 08/07/03			
Acenaphthene	2680	8.7	330	ug/kg	3330		80	34-114			
4-Chloro-3-methylphenol	2880	11	660	"	3330		86	24-118			
-Chlorophenol	2400	16	330	"	3330		72	29-101			
,4-Dichlorobenzene	2360	15	330	"	3330		71	25-104			
2,4-Dinitrotoluene	3250	20	330	"	3330		98	42-116			
1-Nitrophenol	3010	23	1700	"	3330		90	31-109			
N-Nitrosodi-n-propylamine	2540	15	330	"	3330		76	23-117			
Pentachlorophenol	3010	12	1700	"	3330		90	34-114			
Phenol	2370	12	330	"	3330		71	20-105			
Pyrene	3430	12	330	"	3330		103	30-124			
1,2,4-Trichlorobenzene	2640	15	330	"	3330		79	28-112			
Surrogate: 2-Fluorophenol	3330			"	5000		67	11-120			
- *											

5000

Sequoia Analytical - Petaluma

Surrogate: Phenol-d6

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

16-130

69

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P307532 **Reported:** 08/15/03 14:38

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3070671 - 1	EPA 3550A	Sonication
-------------------	-----------	------------

Surrogate: Nitrobenzene-d5 2690					07/31/03					
0			ug/kg	3330		81	16-126			
Surrogate: 2-Fluorobiphenyl 2660			"	3330		80	28-134			
Surrogate: 2,4,6-Tribromophenol 4760			"	5000		95	51-144			
Surrogate: Terphenyl-d14 3480			"	3330		105	64-119			
Matrix Spike (3070671-MS1) Sou	rce: P30753	32-09		Prepared:	07/31/03	Analyze	1: 08/07/03			
Acenaphthene 2560	8.7	330	ug/kg	3330	ND	77	30-110			
4-Chloro-3-methylphenol 2770	11	660	"	3330	ND	83	27-109			
2-Chlorophenol 2330	16	330	"	3330	ND	70	24-98			
1,4-Dichlorobenzene 2310	15	330	"	3330	ND	69	24-89			
2,4-Dinitrotoluene 2950	20	330	"	3330	ND	89	35-110			
4-Nitrophenol 2750	23	1700	"	3330	ND	83	20-110			
N-Nitrosodi-n-propylamine 2490	15	330	"	3330	ND	75	23-109			
Pentachlorophenol 2540	12	1700	"	3330	ND	76	25-123			
Phenol 2310	12	330	"	3330	ND	69	19-100			
Pyrene 3110	12	330	"	3330	ND	93	12-131			
1,2,4-Trichlorobenzene 2500	15	330	"	3330	ND	75	17-110			
Surrogate: 2-Fluorophenol 3220			"	5000		64	11-120			
Surrogate: Phenol-d6 3370			"	5000		67	16-130			
Surrogate: Nitrobenzene-d5 2560			"	3330		77	16-126			
Surrogate: 2-Fluorobiphenyl 2510			"	3330		75	28-134			
Surrogate: 2,4,6-Tribromophenol 4210			"	5000		84	51-144			
Surrogate: Terphenyl-d14 3110			"	3330		93	64-119			
Matrix Spike Dup (3070671-MSD1) Sou	rce: P30753	32-09		Prepared:	07/31/03	Analyzed	1: 08/07/03			
Acenaphthene 2450	8.7	330	ug/kg	3330	ND	74	30-110	4	26	
4-Chloro-3-methylphenol 2570	11	660	"	3330	ND	77	27-109	7	21	
2-Chlorophenol 2150	16	330	"	3330	ND	65	24-98	8	27	
1,4-Dichlorobenzene 2150	15	330	"	3330	ND	65	24-89	7	25	
2,4-Dinitrotoluene 2870	20	330	"	3330	ND	86	35-110	3	15	
4-Nitrophenol 2530	23	1700	"	3330	ND	76	20-110	8	23	
N-Nitrosodi-n-propylamine 2320	15	330	"	3330	ND	70	23-109	7	31	
Pentachlorophenol 2350	12	1700	"	3330	ND	71	25-123	8	43	
Phenol 2230	12	330	"	3330	ND	67	19-100	4	21	
Pyrene 3020	12	330	"	3330	ND	91	12-131	3	26	

Sequoia Analytical - Petaluma

Project: Aerojet RI/FS
Project Number: N/A
Project Manager: Bruce Lewis

P307532 **Reported:** 08/15/03 14:38

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control Sequoia Analytical - Petaluma

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3070671 - EPA 3550A Sonication

Matrix Spike Dup (3070671-MSD1)	Sour	ce: P307532	2-09		Prepared:	07/31/03	Analyze	d: 08/07/03			
1,2,4-Trichlorobenzene	2320	15	330	ug/kg	3330	ND	70	17-110	7	30	
Surrogate: 2-Fluorophenol	2920			"	5000		58	11-120			
Surrogate: Phenol-d6	3160			"	5000		63	16-130			
Surrogate: Nitrobenzene-d5	2380			"	3330		71	16-126			
Surrogate: 2-Fluorobiphenyl	2380			"	3330		71	28-134			
Surrogate: 2,4,6-Tribromophenol	4020			"	5000		80	51-144			
Surrogate: Terphenyl-d14	3010			"	3330		90	64-119			

Notes and Definitions

J Estimated value.

Q-LIM The percent recovery was outside of the control limits. The samples results may still be useful for their intended purpose.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

NCORP (Chain of Cu	Custody Record	Q	Z 10
E.T.R. NO: WORK ORDER NO:		REQUESTED	SAMPLE ANALYSES	
SOURCE SITE NO: AUGER HOLE NO:		CS CODE) ICS EPA 82 1270 5010	1 \$ 2 1 C	
SAMPLERS (SIGNATURE) JOHN JUNCELE		F SAMPLE CONTYPE (USC STILE ORGANIC'S EPA 8 ALS EPA 6 CHLORATE	DRATORY	P307532
COC FIELD DEPTH DATE SAMPLE ID SAMPLE NO. (FT.) MM/DD/YY	TYPE OF CONTAINER	# OF SOIL VOLA BNA MET/	o Company and the Company of the Com	REMARKS
6 6 07	1606			CEPARTICE -O
1105 B 350-5826-11 11 07/25/03	20			-02
\$876-15E - 071	25/03 1631 12MBER			1 -03
1105 D 35D-3826-15 15 07/25	103 1649	\$ \times 600		10-
1105 E 350 5822-20 70 07 1281	03 940			RETORT TIES I'MITED SAMPLE
1105 F 350-5R76-30 30 07 1281	703 1044	GC.		-6
1	703 1105	3		
D H 358-53 ZC-350 35	63 1/05	560		
一切なる人でから	03 134	, SW		
1105 K 3h 407/2,5 7:5 07/29	20	***		1
L 350-5876-20E - 07%	103 1584 Link			K 1 2
1105 o			COOLER CUSTODY SE	
				The second secon
1105 Q				23 Externació
TOTALS				A Section of the sect
RELINQUISHED BY: (SIGNATURE)	07/28/03 15/58 P	RECEIVED BY: (SIGNATURE)		TOTAL NO. OF SAMPLE CONTAINERS:
PELINOUISHED BY: (SIGNATURE)	7/28/03 1623 P	RECEIVED BY: (SIGNATURE)	ME.	METHOD OF SHIPMENT:
ATURE)	785	HECEIVED BY LABORATORY BY: (SIGNATURE)	Segsal Period LA	LABORATORY DELIVERED TO:
System of the state of the stat	7/29lo3	26	SAC 1230	
ORIGINAL - ENVIRONMENTAL OPERATIONS: WHITE 2ND COPY -	Y: YELLOW	3RD COPY – SAMPLER: <i>PINK</i>	Wester 72963	767.35 v. 4

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

requiring thermal pres.:4+/-2°C) (Yes)/No*	(Acceptance range for samples	12. Temp Rec. at Lab:	used: Yes / No*	11. Proper Preservatives	hold time: Yes / No*	10. Sample received within	labels agree? (Yes)/ No*	reports and sample	custody reports, traffic	9. Does information on	Leaking*	8. Sample Condition: /ntact / Broken* /	on-Chain-of-Custody	7. Sample IDs: Listed Not Listed	6. Sample Labels: Present Absent	5. Airbill #:	Present / Absent	4. Airbill: Airbill/Sticker	Packing List: Present / Absent	3. Traffic Reports or	2. Chain-of-Custody Present / Absent*	Intact / Broken*	1. Custody Seal(s) Present / Absent		CIRCLE THE APPROPRIATE RESPONSE		WORKORDER: P301537	REC. BY (PRINT)	CLIENT NAME: Lerotet
																								SAMPLE#	LAR				
		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			<i>X</i>							ひ 2年	22	F	5	35)	35	3	20	Ō	SI	and a	85D-SB26-6	# CLIENT ID			LOG IN DATE:	TIME Received at Lab:	DATE Received at Lab:
				7				7				S	r from	Ан айстичника	+1-7 × 1-3 ×	accordata de antique		hand to be seen out the	and the second	NC.	S	foccoson.	NC.	DESCRIPTION		0	12963	58	72203
	2					Ż						8	<	graphic distribution in the party of the par		HERVING AND STREET	ideologica (carcay)	Walkario zug	TORN NO. 16 A	S	>	(m.	3	MATRIX	a IdMVS		•	•	•
)	10											>ct z¥eccsopso _e ,	Anggeret/scene			ユピタ	E	**COMMON COMMON		7/25	MATRIX SAMPLED	TATE	regulatory purposes:	(Wastewater) for	regulatory purposes:	(Drinking water) for
	4																							CONDITION (ETC.)		purposes: YES/NO	r) for	purposes: YES/NO	vater) for

Sample Receipt Log Revision 2.1 (11/10/00) Replaces Revision 2 (11/06/00) Enecuve 11/12/00

Page _____ of ____

*If Circled, contact Project Manager and attach record of resolution.